
Annals Of Agricultural Science, Moshtohor

Faculty of Agriculture. Moshtohor , Zagazig University (Banha - Branch)

أبناث باللغة العربيسه	had am I
VETERINARY	2205-2232
PLANT PROTECTION	2097-2204
HORTICULTURE	2029-2096
DAIRY AND FOOD TECHNOLOGY	1917-2028
BOTANY	1811-1916
ANIMAL PRODUCTION	1791-1810
AGRONOMY	1727-1790

VOL 32 Number 4

Dec. 1994

Annals of Agric. Sc., Moshtohor, Vol. 32(4):2167-2177, 1994

STUDIES ON WATER-HYACINTH (EICHHORNIA CRASSIPES) GROWN IN EGYPT By

Farid, M.R *, Abdel Shafy, H.I.** and Shams El-Din, A.M.**

- * Dept. of Horticulture, Fac.of Agriculture, Minufiya Univ
- ** Dept. of Water Research and Pollution Control, NRC.
- *** Dept. of Plant Protection, Fac.of Agriculture, Moshtohor.

ABSTRACT

Samples of water-hyacinth were collected from the main stream of Nile river near the location of El-Kanater El-Khayria. Plant samples were taken at three intervals; March, August and December during growing seasons of 1992 and 1993. The harvested plants were divided into leaves, stems and roots and were subjected for general analysis of crude protein, ash, crude fat, fibres and nitrogen free extract.

Also, sugars and carbohydrates were determined in the different plant samples. Plant stems showed maximum reducing sugars content, whereas the highest concentration of non-reducing and total sugars were recorded in the leaves. The mineral analysis revealed that sodium, potassium magnesium and calcium were found in relatively higher level, iron, zinc and manganes were measure in moderate concentration, while copper, lead and cobalt were detected in plant tissues in minor amounts. The content of the determined minerals were depended mainly on the sampling date and the plant organ.

INTRODUCTION

Water-hyacinth (Eichhornia crassipes) is one of the most important Literature showed that the chemical composition of water-hyacinth varies considerably according to the location and season.

Salveson (1971) mentioned that constituents of dried water-hyacinth on dry weight basis were 10 % crude protein, 11 % ash and 79 % organic matter. Hathout *et al.* (1980) showed that the dry matter content of different plant organs of waterhyacinth being 6.87, 4.22 and 7.88 % for leaves, stems and roots, respectively.

Singh and singh (1982) found that the hay prepared from water-hyacinth contains 10.76 crude protein. 4.94 % fat, 17.9 % crude fibre, 44.3 % nitrogen free extract, 22.1 % ash, 1.42 % calcium and 0.58 % phosphorus.

Abou-Bakr et al. (1984) reported that water-hyacinth contains 49.6 % tein, 16 % total lipids, 26.9 % total carbohydrates 11.7 % fibre and 5.8 %

On the other side, Austin et al. (1985) and Jamil et al. (1985) showed water-hyacinth has the ability to absorb toxic heavy metals such as nium, zinc. copper and lead In turn, such plants could be used as a ogical indicators for environmental pollution as stated by Abdel-Halcem et 1992). Mineral analysis of water-hyacinth showed the following ranges: 63 -, 220 - 280 , 55 - 60 , 5 - 10 and 0 - < 5 ppm for Fe , Mn , Zn , Cu and Pb . ectively as determined by Kaiser et al. (1983) and El-Falaky et al. (1988).

There has been an emphasis on converting aquatic weeds into useful rces, for example as an animal feed, compost fertilizer or for energy iction (Welverton, 1975 and singh and singh 1982).

Several experiments were achived to study the possibilty of making use iter-hyacinth as animal feed stuff (Hegazi et al. 1985 and Mishra et al.

Similary, several attempts were conducted for utilization of waterith as a compost fertilizer (El-Kadi, 1978; Ahmed et al., 1982 and Gamal 1 and Badr El-Din, 1986).

The most economic value, however, of aquatic plants is its effectiveness iciency for removing elements (especially heavy metals) from the waste finated polluted water. Several reports showed that water-hyacinth has y to collect up and remove heavy metals from the polluted water (Jamil et 15; Satyakala et al., 1986 and Goel et al., 1985).

The present work was conducted to through light on the chemical ition of water-hyacinth in Egypt

MATERIALS AND METHODS

Samples of water-hyacinth were collected from the main stream of Nile ar the location of El-Kanater El-Khayria. Plants were harvested at October and December, 1992 and 1993 to represent different stages of

Samples were washed and brough to the laboratory in polyethylene ch plant sample was substituted Fig. 1

dried at 70°C for 24 hrs. The dried plant materials were kept for the other chemical analysis

Determination of ash:

Ashing was carried out in a muffle furnace by heating at 800°C for 24 hrs (A.O.A.C., 1985).

Determination of nitrogen and protein:

Total organic nitrogen and crude protein were determined by the usual Kjeldahl method (A.O.A.C., 1985).

Determination of crude fat:

Total lipids were extracted in a soxhlet apparatus using petroleum ether (60-80°C) for 8 hrs according to (A.O.A.C., 1985).

Determination of crude fibers:

Crude fibers were estimated by the subsequent boiling in sulphuric acid (200 ml, 1.25 % W/V) and sodium hydroxide (200 ml, 1.25 %) as described in (A.O.A.C., 1985).

Determination of the nitrogen free extract:

Nitrogen free extract was calculated by difference

Determination of total carbohydrates and sugars content:

Total carbohydrates were hydrolyzed using 1 N sulphuric acid in sealed tubes at 100°C for 24 hrs. Total soluble sugars were extracted by 80% ethanol for 6 hrs. Total carbohydrates and sugars were determined using the method described by Dubois et al. (1956). Reducing sugars were determined in the ethanolic extract using the A.O.A.C. method (1985).

Determination of minerals content:

The dried samples were digested in Kjeldah flasks using a mixture of nitric-perchloric-sulphuric acid mixture (3 : 2 : 1 V/V/V). After complete digestion, the solution was cooled and transferred into a volumetric flash and made up to the volume with distilled water. Mn, Cu, Pb, Ca, Mg, Fe, Na, Co, K and Zn were determined in the sample solution using Unicam Sp 1900 Atomic Absorption.

RESULTS AND DISCUSSION

roteins showed higher values in samples collected during March or August ather than those harvested in December. That holds true for both the studied easons (1992 & 1993). On the other side both leaves or stems exhibited slight icrease in their proteins content as compared with the roots. Ash content lowed maximum concentration during March. The highest ash content was steeted in leaves during both the successive seasons.

Naturally, fat was found in relatively law concentration of wateracinth plant organs. Samples collected during December showed the aximum fat content rather those collected during March or August for both the insequent seasons. The leaves exhibited comparatively more fat content than at of stems or roots.

ber content showed the following trend during the two seasons of study:

March > December > August . However the plant organs exhibited the lowing order : roots > stems > leaves in relation to their fibres content.

Nitrogen free extract was the predominant fraction as compared with tother determined component in water-hyacinth. However, its fluctuation ring the different sampling dates could be arranged as follows: December ugust >March.

Thus, it could be deduced that there was negative correlation between rogen free extract content and both crude protein and ash content. On the er side no detectable variation could be found between the different plant ans with concern to their nitrogen free extract content.

Previous investigators mentioned more or less values for the chemical lysis of water-hyacinth as compared with the data given herein. For instance, veson (1971) declared that water-hyacinth contain 10 % crude protein, 11 % and 79 % organic matter.

On the other side, Abou-Bakr et al. (1984) reported that water-hyacinth lained 49.6 % protain, 16 % total lipids, 26.9 % total carbohydrates, 11.7 % and 5.8 % ash, such variation is expected and should be atributed to the ronmental condition in which the plant grown in.

iugars and carbohydrates content:

Leaves, stems or roots of water-hyacinth showed considerable variations regard to their sugars and carbohydrates content. In this connection, stems led maximum reducing sugars content. On the other side, leaves of water into applicated the state of the

Table (1): Chemical composition of the dried water_hyacinth (values are expressed as gm / 100 gm D.Wt).

Camalian datas		Season	1992			Season	1993	
Sampling dates	March	August	December	Mean	March	August	December	Mean
			12,225,36,7°	450	Ş			
1 Crude Protein								
Leaves	15 86	16 81	13 86	15 51	16 81	17 35	14 85	16 34
Stems	17 21	16 03	12 51	15 25	18 35	18 21	13 21	16 57
Roots	16 43	15 21	12 33	14 66	17 26	17 22	12 98	15 82
Mean	16 5	16.02	12 9		17 47	17 59	13 66	
2 - Ash								
Leaves	17 11	12 83	12 33	14 09	18 08	13 51	12 53	14 71
Stems	14 83	10 16	10 22	11 74	15 13	12 26	11 82	13 07
Roots	15 22	11 25	11 85	12 77	16 28	10 35	10 31	12 31
Mean	15 72	11 41	11 47		16 49	12 04	11 55	
3-Crude fat								
Leaves	2 85	4 36	5 96	4 36	3 08	5 11	5 92	4 70
Stems	1 89	3 25	3 98	3 04	2 11	4 21	4 36	3 56
Roots	2 08	3 93	3 11	3 04	2 43	3 85	4 08	3 45
Mean	2 27	3 85	4 32		2 54	4 39	4 79	
4- Fibres							* •	
Leaves	21 15	18 87	18 35	19 46	19 11	17 65	19 16	18 64
Stems	25 30	19 36	22 45	22 37	23 56	18 34	21 35	21 08
Roots	24 86	20 21	23 16	22 74	25 11	19 85	22 38	22 45
Mean	23 77	19 48	21 32		2 2 59	18 61	20 96	
5- Nitrogen free extract								
Leaves	43 03	47 13	49 60	46 59	42 92	46 38	47 54	45 61
Stems	40 77	51 20		47 60	40 85	46 98	49 31	45 71
Roots	41 41	49 40	49 55	46 79	38 92	48 73	50 31	45 99
Mean	41 74	49 24	49 99		40 89	47 38	49 05	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Table (2); Sugars and carbohydrates content of dried water_hyacinth (mg / g.d. wt).

Sampling dates		Season, 1992			Season, 1993				
	March	Augesi	Decembe	er Mean	March	Augus	Decembe	r Mean	
1-Reducing Sugars	•			-				-	
Leaves Stems Roots Mean	12 35 22 31 10 15 14 94	11 15 22 35 12 61 15 37	15 16 13 31 14 56 14 34	12 89 19 32 12 44	20 51	13 61 22 08 15 55	14 16 12 15	14 69 18 92 14 10	
-Non_reducing sugars					10 40	17 08	14 15		
eaves terns oots ean	38 25 25 16, 20 33 27 91	40 15 30 61 18 51 29 76	32 15 18 61 12 11 20 96	36 85 24 79 16 98	40 15 32 11 19 85 30 70	45 61 25 38 21 08 30 69	38 11 20 16 18 11 25 46	41 29 25 88 19 68	
Total sugars laves ems leots lean	50 6 47 47 30 48 42 85	51 30 52 96 31 12 45 13	47 31 31 92 26 67 35 30	49 74 44 12 29 42	54 46 52 62 34 45 47 18	59 22 47 46 36 63 47 77	54 26 34 32 30 26	55 98 44 80 33 78	
ms ots		335 11 336 81 324 15 332 02	311 92 275 60 265 31 284 28	310 18 303 70 278 85	295 53 308 2 267 11 290 28	345 08 356 15 311 7	308 40 297 45	316 34 320 60 289 11	

The same trend was noticed for total carbohydrate content regarding its distribution in the different organs of water-hyacinth, i.e. leaves > stems - roots. That holds true for both the successive seasons.

On the other side, reading of sugars and carbohydrates content showed no fixed trend alongside the different sampling dates. In other wards some fluctuations were detected during the course of study. In most of cases, water-hyacinth samples harvested in August exerted maximum sugars and carbohydrates content rather than those collected in March and December.

3 - Minerals content:

Data presented in Table (3) demonstrate the elements content of the dried water-hyacinth during different sampling dates

It could be easily noticed that sodium, potassium, magnesium and calcium are the predominant element fron, Zinc and manganese are occured in relatively moderate concentrations. On the other side, copper, lead and cobalt were detected in low levels in comparison with the above mentioned elements.

In both the studied seasons, sodium was found in high level in samples taken in March or August rather than those of December. While leaves of water-hyacinth showed maximum sodium content in season, 1992, however, roots exerted the highest sodium level in the second season (1993).

More or less similar pattern could be observed with regard to potassium and magnesium as they exhibited higher levels in the earlier sampling dates (March or August). However, the distribution of both potassium or mangnesium in the different organs was varied according to the sampling date and the growing season. Maximum potassium was detected in leaves of plants havrested in 1992, however, highest potassium level was shown in roots of plants collected in 1993.

Calcium showed maximum content in August, 1992 and March, 1993 respectively. Manganese, Zinc and ferric exhibited another trend in response to their fluctuation in water-hyacinth tissues during the different sampling dates. Sampling date of August gave the maximum levels for the last mentioned three element. However, comparatively less amounts were found in plants sampled in March or December of both the studied seasons.

No regular trend could be noticed in response to the distribution of these elements in the different plant organs.

Table (3): Minerals content of dried water_hyacinth as mg / 100 g.d. wt.

Sampling date	Season, 1992 s			Season, 1993					
	March	August	December	Mean	March	August	December	Mean	
1-Sodium								1416811	
		300 500					•		
Leaves	1325 2	1033 5	883 5	1080 7	1453 6				
Stems	1158.6	1105 4	936 7	1066.9	00 0	1220 0	936 8	1205 3	
Roots	1083.5	1125 6	745 5	984 9			1018 5	1248 2	
Mean	1189 1	1088 2	855.2	984 9	(4)173	1221 5	1145.3	1337 2	
			0557		1544 1	1211 1	1033 5	1007 2	
2-Potassium									
Leaves	1125 5	1221 5	025.5						
Stems	1236 4	1155 6	925 5	1090 8	1325 6	1535 5	1143 0	4224 ==	
Roots	1145 5		843 4	1078 5	1435 5	1643 2	1256 5	1334 7	
Mean	1135 8	1030 5	716 5	964 2	1611 4	1745 9	1125 3	1445 1	
	. 133,0	1135 9	828 5		1457 5	1641.5	1174.9	1494 2	
3-Copper						.0	1174 9		
eaves	68.3								
Stems	54.5	83 4	58 8	70 17	79 8	91 33	60.0-		
Roots		65 1	48 8	56 14	66 5	668	60 25	77 13	
/lean	53 2	73 6	41.2	56 02	54 8	71.8	63 18	65 49	
	58 7	74 0	49 6		67 03	76.6	48 61	58 4	
-Mgnesium					0, 03	70.0	57 35		

4	835 5	783 5	516 5	7118	9115	045.5			
	683 4	6113	443 7	579 5		915 5 700 -	483 5	736 8	
-11	715 2	583 4	411.4	570 0	833 2	733 6	566 6	711 1	
i dali	744.7	659 4	457.2	5700	954 8	683 5	453 3	697 2	
14					8998	744 2	501 1	. –	
Manganese									
aves	436 3	583 4	327 B	440 =					
ems	325.2	617.5	435 4	449 2	531 8	673 2	435 2 · -	548 7	
oots	1115	538 1		459 4	614 5	711.5	531 3	619 1	
	91 0	579 7	3115	420 4	533 1	615.4	387 8	- •	
<u></u> -		019 1	358 2		5598	666 7	451 4	512 1	

Continue: Table (3): Minerals content of dried water_hyacinth as mg / 100 g. d.wl,

Complier d	Season, 1992			Season, 1993				
Sampling d	March	August	December	Mean	March	August	December	Mean
6 Zinc		***********	· · · · · · · · · · · · · · · · · · ·	,				
Leaves	435 6	5116	318 7	421 9	531 7	598 8	425 5	5187
Stems	531 8	631 7	323 5	495 7	666 8	687 4	398 6	584 3
Roats	518 4	598 4	4118	509 5	618 5	683 1	325 4	542 3
Mean	495 3	580 6	351 3		605 7	656 4	383 2	542 5
7-Calcium								
Leaves	853 5	897 4	683 4	8114	983.6	925 4	781 5	896 8
Stems	7118	808 2	761 5	760 5	835 4	731 5	613 4	726 8
Roots	643 5	765 4	645 4	684 8	806 1	8115	633 8	750 5
Mean	736 3	823 7	696 8		875 1	822 8	676 2	
0-Lead								
Leaves	23	18 6	78	9 58	45	21 3	94	11.73
Stems	4.2	19 2	5 1	9 51	53	25 6	7.5	128
Roots	35 '	86	43	5 48	47	22 8	9.5	12 33
Mean	3 3	15.5	5 7		48	23 2	88	
9-Ferric								
Leaves	416 5	561 3	337 8	438 5	533 4	665 5	216 5	4718
Stems	325 4	6115	215 5	384 1	466 8	638 4	245 3	450 2
Roots	319 5	525 1	208 6	351 1	401 0	559 4	200 8	387 0
Mean	353 8	565 9	253 9		467 1	621 1	220 8	
10-Cobalt								
Leaves	30 11	35 8	37 8	34 57	25 €	23 4	25 8	24 9
Stems	25 2	30 5	35 5	30 40	218	26 5	27 3	25 2
Roots	22.7	28 4	318 .		20 2	28 4	21.5	20 0
Mean	26 0	316	35 0		22 5	22 8	24 9	

December. Goel et al. (1985) reported that the accumulation of mineral in water-hyacinth depends on the initial concentration of nutrients in water, the period of growth and the plant part. Abdel Haleem, et al. (1992) reported that water-hyacinth plant is a good tool for water profile enrironmental monitoring and it could reflect the situation of the investigated water-profile.

REFERENCES

- Abdel-Haleem. A.S., Abdel-Sabour, M.F. and Zaghloul, R.A. (1992): The use of water hyacinth as biological indicator of environmental contamination by heavy metals. Proc. Conf. in Environmental contamination, CEP.consultant ltd., UK., pp 263-265.
- Abou-Bakir, T.M.; El-Shemi, N.M. and Mesallam, A.S. (1984): Isolation and chemical evaluation of protein from water hyacinth Qual plant plant Foods Ham. Nutr., 34: 67-73.
- Ahmed, S.A.; Ito, M. and Ueki, K. (1982): Phytotoxic effect of water-hyacinth extract and decayed residue. Weed Research Japan. 27: 177-183.
- A.O.A.C. (1985): Official Methods of Analysis of the Association of Official Analytical Chemists, 12 th Ed., Washington, D.C. 20044.
- Austin, J.R.; Simon, S.J.; Williams, L. and Beckert, W.F. (1985): New biological reference materials in vivo incorporation toxic metals in water-hyacinth tissues. ASTM Spec. Tech. Publ., 867: 305-3/6
- Dubois, M; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A. and Smith, F. (1956): Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.
- El-Falaky, A.a.; T.M. Labib and T.H. Hamed (1988): Studies on water pollution in Hellwan industrial district, Egypt. Water Sci., 4: 65 69.
- El-Kadi, O.A.T (1978): Influence of some natural local amendments on the reclamation of sandy soils of the Tahreer province, ARE M Sc. Thesis, Fac. of Agric., Cairo Univ.
- Gamal-El-Din, H. and Badr-El-Din, S.M. (1986): Antimicrobial and phytotoxic effect of a substance isolated from water-hyacinth. Forum Staedte-Hyg., 37: 23-26.

دراسات على نبات ورد النيل النامى في مصر

محمد رفعت فريد* -حسن عبد الشافى** - على محمد شمس الدين*** * قسم البساتين - كلية الزراعــة - جامعــة المنوفيــة.

** قسم بحوث المياه والتلوث - المركز القومي للبحوث.

* * * قسم وقايسة النبسات - كلية الزراعسة - مشتهر.

تم اخذ عينات نبات ورد النيل من المجرى الرئيسى لنهر النيل في منطقة القناطر الخيرية حيث تتراكم بها سنويا كميات كبيرة من ورد النيل. وقد تم اخذ العينات في اشهر مارس-أغسطس وديسمبر في اعوام ١٩٩٢-١٩٩٢ حيث تم فصل النباتات الى اوراق - ساق - جندر لاداء التصاليل الكيماوية الاساسية وهي البروتين - الرماد - الدهون - الالياف وبالطرح تم حساب نسبة المستخلص الحالى من النتروجين و الى ذلك تم تقدير السكريات والكربوهيدرات الكلية في اجزاء النبات المختلفة حيث اظهرت الساق اعلى تراكم السكريات المختزلة في حين كان اعلى تركيز للسكريات الغير مختزلة والكلية في الاوراق وذلك خلال موسمي الدراسة.

ولقد اظهر تحليل العناصر وجود كل من الصوديوم - البوتاسيوم - الماغنسيوم والكالسيوم بتركيزات مرتفعة نسبيا في حين كانت نسبة الحديد - الزنك - والمنجنيز متوسطة . اما العناصر التقيلة مثل الكوبلت والرصاص فقد وجدت بتركيزات منخفضة ولقد اعتصد تركيز هذه العناصر بصفة عامة على موعد اخذ العينة والعضو النباتي .

هِ لَيَاتَ الْعُلُومِ الزراعية بَهُمُتُعُمِ

عامعة الزفاريق / فرع بنما

كلية الزراعة يصنينص

أبحاث باللغة العرببية	ter I I
VETERINARY	2205-2232
PLANT PROTECTION	2097-2204
HORTICULTURE	2029-2096
DAIRY AND FOOD TECHNOLOGY	1917-2028
BOTANY	1811-1916
ANIMAL PRODUCTION	1791-1810
AGRONOMY	1727-1790

دبيسمبر ١٩٩٤

المجلح الثاني والثلاثيون العدد الرابع